
Chapter 51487

Simple Bayesian Models1488

In this chapter, we lay out the basic principles of Bayesian inference, building on the concepts1489

of probability we developed earlier (Chapter 3). Our overarching purpose is to use the rules of1490

probability to show how Bayes theorem works. We will make use of the conditional rule of probability1491

and the law of total probability, so it might be useful to review these first principles (Section 3.2)1492

before proceeding with this chapter.1493

We begin with the central, underpinning tenet of the Bayesian view: the world can be divided1494

into quantities that are observed and quantities that are unobserved. Unobserved quantities include1495

parameters in models, latent states predicted by models, missing data, effect sizes, predictions of1496

future states, and data before we observe them. We want to learn about these quantities using1497

observations. Bayes provides a framework to achieve that understanding, a framework that is1498

applied in exactly the same way regardless of the specifics of the research problem at hand or the1499

nature of the unobserved quanties we want to understand.1500

The feature of Bayesian analysis that most clearly sets it apart from all other types of statis-1501

tical analysis is that Bayesians treat all unobserved quantities as random variables.1 Because the1502

1There is some argument among statisticians about whether states of ecological systems and parameters governing
their behavior are truly random. Ecologists with traditional statistical training may object to viewing states and
parameters as random variables. These objections might proceed like this. Consider the state, “the average biomass
of trees in a hectare of Amazon rainforest.” It could be argued that there is nothing random about it, that at any
instant in time there is an average biomass that is fixed and knowable at that instant – it is determined, not random.
This is true, perhaps, but the practical fact is that if we were to attempt to know that biomass, which is changing by
the minute, we would obtain different values depending on when and how we measured it. These values would follow
a probability distribution. So, thinking of unknowns as random variables is a scientifically useful abstraction with
enormous practical benefits, benefits we will demonstrate in later chapters. We will leave arguments about whether
states and parameters are “truly random” to metaphysics. As an aside, Ben Bolker (personal communication) points
out that “The same traditionally trained ecologists who object to treating states as random variables don’t mind
using hypothesis tests that are grounded in the idea of a long-term frequency of observation in repeated observations,
which don’t sensibly exist in many cases...”
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behavior of random variables is governed by probability distributions, it follows that unobserved1503

quantities can be characterized by probability distributions like those we learned about in Section1504

3.4. Bayesian analysis uses the rules of probability (Section 3.2) to discover the characteristics1505

of the probability distributions of unobserved quanties. Understanding those distributions enables1506

the ecological researcher to make statements about processes tempered by honest specifications of1507

uncertainty.1508

It is fundamental to Bayesian analysis to understand the distinctions among things that are1509

known vs. unknown, observed vs. unobserved, and random variables vs. fixed quantities. The first1510

distinction is this. Things that are known are not random variables but rather are treated as fixed.1511

This might seem obvious, but it can be slippery. Numerical constants, for example ⇡, are known.1512

Things that are not observed, for example, parameters in a model, latent states, predictions, and1513

missing data are unknown and are always modeled as random variables. But what about things we1514

observe?1515

Observations of responses (i.e., the y) are always modeled as random variables. How can this1516

be? How can something that we observe be random? The key idea here is that the y are random1517

variables before they are observed. After we observe them, we have quantities in hand that represent1518

one instance of a stochastic process. So, this one instance of observations is fixed but if we repeated1519

our observations of the response, we would not expect to always get identical values. The sources1520

of stochasticity in responses will be treated in greater detail as we proceed.1521

What about observed predictor variables (i.e., covariates, the x)? Are they random or fixed?1522

Rightly or wrongly (usually wrongly), ecologists often treat predictor variables as being observed1523

perfectly – they are observations but they are treated as if they were known, fixed quantities. They1524

are not random variables if we assume they are measured without error, but they are random1525

variables if we assume they have measurement or sampling errors that we seek to include in our1526

model.1527

5.1 Bayes theorem1528

The basic problem in ecological research is to understand processes that we cannot observe based on1529

quantities that we can observe. We represent unobserved processes as models made up of parameters1530

and latent states, which we will notate here as ✓. We make observations y to learn about ✓. Before1531
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the data are observed, we treat them as random variables. The chance of observing the data1532

conditional on ✓ is given by a probability distribution, [y|✓]. Because ✓ is also a random variable,1533

it is governed by a probability distribution, [✓]. We want to discover the probability distribution of1534

the unobserved ✓ conditional on the observed data, that is [✓|y]. Using the basic rules of conditional1535

probability for two random variables,1536

[✓|y] =

[✓, y]

[y]
(5.1.1)

[y|✓] =

[✓, y]

[✓]
. (5.1.2)

Solving 5.1.2 for [✓, y] we have1537

[✓, y] = [y|✓] [✓] . (5.1.3)

Substituting the right hand side of 5.1.3 for [✓, y] in 5.1.1 we obtain,1538

[✓|y] = [y|✓] [✓]
[y]

. (5.1.4)

Because y is conditional on ✓, the law of total probability (equations 3.2.13 and 3.2.14) for discrete1539

valued parameters shows that1540

[y] =
X

✓

[y|✓] [✓] (5.1.5)

where we are summing over all possible values of . For parameters that are continuous,1541

[y] =

ˆ
[y|✓] [✓] d✓. (5.1.6)

Substituting the right hand side of equation 5.1.5 for [y] in 5.1.4 we obtain Bayes theorem for1542

discrete valued parameters,1543

[✓|y] = [y|✓] [✓]P
✓

[y|✓] [✓] (5.1.7)

and similarly substituting equation 5.1.6 for [y] in 5.1.4 we find Bayes theorem for parameters that1544

are continuous,1545

[✓|y] = [y|✓] [✓]´
[y|✓] [✓] d✓

. (5.1.8)
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Bayes theorem provides the basis for estimating the probability distribution of the unobserved1546

quantities ✓ informed by the data y. A simple example illustrates these ideas graphically (Box 5.1).1547

Box 5.1 Illustration of Bayes Theorem

Imagine support for the parameter ✓ shown as the light colored polygon labeled S. Assume that ✓

can take on three values, ✓
1

, ✓
2

, and ✓
3

. We assume for simplicity that these are the only possible

values – they are mutually exclusive and exhaustive, i.e.,
P

i

area of wedge
i

= S. The area of each ✓
i

wedge divided by the area of S reflects our prior knowledge of the parameter, area of wedge ✓

i

area of S

= Pr (✓
i

).

If we had no reason to favor one value of ✓
i

over another, Pr (✓
1

) = Pr(✓
2

) = Pr(✓
3

) =

1

3

.

                                                         

   y

θ1

θ3
θ2

S

We now collect some data shown by the dark polygon y. The parameter ✓ controls how the

data arise. So, for example, the data might be the number of survivors observed in a sample of

n individuals during time �t where ✓ is the probability that an individual survives over the time

interval. We want to use the data to update our knowledge of ✓.

Given that we have data in hand, we can limit attention to the wedge of the ✓
i

contained within

the data polygon. The probability of ✓
i

is Pr (✓
i

|y) =

area of ✓

i

within y

area of y

=

area of ✓

i

within y/area of S

area of y/area of S

=

Pr(✓

i

\y)
Pr(y)

=

Pr(✓

i

,y)

Pr(y)

. Using the conditional rule of probability to substitute for Pr (✓
i

, y) we have

Pr (✓
i

|y) = Pr(y|✓
i

) Pr(✓

i

)

Pr(y)

. Using Pr (y) = area of y

area of S

=

P
i

Pr (y|✓
i

) Pr (✓
i

), we find Bayes theorem for

discrete parameters,

Pr(✓
i

|y) = Pr (y|✓
i

) Pr(✓
i

)P
j

Pr (y|✓
j

) Pr (✓
j

)

. (5.1.9)

The denominator is a normalizing constant assuring that
P

i

Pr (✓
i

|y) = 1. As the number of wedges

in S increases to infinity and their area decreases to 0, we have Bayes theorem for continuous

parameters,

[✓|y] = [y|✓] [✓]´
[y|✓] [✓] d✓

. (5.1.10)

1548
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Understanding Bayesian inference and why it works requires that we understand each of its1549

components, which we now explain for continuous parameters. The likelihood [y|✓] (Figure 5.1.1)1550

plays a key role in Bayesian analysis by linking the unobserved ✓ to the observed y. It allows us1551

to answer a central question of science: “What is the probability that we would observe the data1552

if our deterministic model, g (✓), accurately portrays the process that gives rise to the data?” We1553

have seen the likelihood before (equation 4.1.4, Figure 4.2.1).1554

The prior distribution of the unobserved quantities, [✓] represents our knowledge about ✓ before1555

we collect the data (Figure 5.1.1). The prior distribution can be informative, reflecting knowledge1556

gained in previous research, or it can be vague, reflecting a lack of information about ✓ before we1557

collected the data that are now in hand. We will treat priors in greater detail in the next section;1558

for now, we highlight prior distributions as one of the components of Bayes theorem.1559

The product of the likelihood and the prior is the joint distribution2 (Figure 5.1.1). We have seen1560

this product ([y|✓] [✓]) before (equation 4.4.1), and we learned that it does not define a probability1561

distribution for ✓ because the area under the curve [y|✓] [✓] with respect to ✓ is not certain to equal1562

one.1563

The marginal distribution of the data1564

[y] =

ˆ
[y|✓] [✓] d✓ (5.1.11)

is the area under the joint distribution curve (Figure 5.1.1). Dividing each point on the joint1565

distribution [y|✓] [✓] by
´
[y|✓] [✓] d✓ normalizes the curve with respect to ✓, yielding the posterior1566

distribution [✓|y]. The posterior distribution is a true probability density function that meets all1567

of the requirements for these functions (Section 3.4.1), including
´
[✓|y] d✓ = 1. Dividing the joint1568

distribution by
´
[y|✓] [✓] d✓ assures that the posterior distribution integrates to 1, which is why [y]1569

is often referred to as a normalizing constant.1570

Before the data are collected y is a random variable and the quantity
´
[y|✓] [✓] d✓ is a marginal1571

distribution, a concept we will use frequently in later chapters (for review, see Section 3.4.2). It is1572

also called the prior predictive distribution – it tells us what we know about the data before they are1573

collected. However, after the data are collected,
´
[y|✓] [✓] d✓ is a known, fixed quantity (a scalar).1574

2Recall that the joint distribution [✓, y] = [y|✓] [✓].
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[✓|y] = [y|✓] [✓]R
✓

[y|✓] [✓] d✓

Figure 5.1.1: Illustration of Bayes theorem for data (y) and unobserved quantities (✓). The likelihood
([y|✓] , grey solid line) gives the probability that we would observe the data conditional on the value of the
parameter. The prior ([✓] , dashed line) specifies the probability of ✓ based on our knowledge of ✓ before
the data were collected. The joint distribution (dotted line) is the product of the prior and the likelihood.
The marginal distribution of the data

�´
[y|✓] [✓] d✓

�
is the integral of the joint distribution, shown here as

the shaded area. (See Section 3.4.2 for a review of the concept of marginal distributions.) The posterior is
the distribution (black solid line) that results when we divide every point on the joint distribution curve by
the area under the curve, effectively normalizing the joint distribution so that the area under the posterior
distribution equals 1.
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This means that1575

[✓|y] / [✓, y] (5.1.12)

/ [y|✓] [✓] . (5.1.13)

We will make extensive use of this proportionality.3 We can use equation 5.1.13 to learn about the1576

posterior distribution from the joint distribution even when we cannot directly calculate [y], as will1577

often be the case. We call equation 5.1.13 a simple Bayesian model because it represents the joint1578

distribution of the observed and unobserved quantities as the product of the likelihood and the prior1579

distributions.1580

We could have developed the same ideas about discrete valued parameters using sums rather1581

than integrals.1582

5.2 The relationship between likelihood and Bayes1583

The fundamental difference between inference based on maximum likelihood and inference based1584

on Bayes theorem is that Bayes treats all unobserved quantities as random variables governed1585

by probability distributions. This treatment is possible because dividing the joint distribution1586

by the marginal distribution of the data assures that posterior distribution is a true probability1587

distribution (Figure 5.2.1). This is a non-trivial result because it allows Bayesian inference to make1588

probabilistic statements about unobserved quantities of interest. In contrast, the likelihood profile1589

is not a probability distribution – there is nothing that assures that the area under the curve equals1590

1 (Figure 5.2.1). Unknowns cannot be treated as random variables in the likelihood framework.1591

Instead, likelihood depends on comparing the relative strength of evidence in data for one value1592

of a parameter over another value. The use of prior information can be accomplished in Bayesian1593

and likelihood analysis using [y|✓] [✓]. In likelihood, we find the values of ✓ that maximize [y|✓] [✓].1594

The normalization of this product by the marginal distribution of the data is what sets Bayesian1595

inference apart from inference based on likelihood – it allows unobserved quantities to be treated1596

as random variables.1597

3The constant of proportionality is the reciprocal of the marginal distribution of the data, which is a constant
after the data are observed.
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Figure 5.2.1: Likelihood profile (left panel) and posterior distribution (right panel) for the parameter prob-
ability of a success (✓) given the observation three successes on twelve trials with vague priors on ✓. The
shapes of the two curves are identical. The area under the likelihood profile does not equal 1. The area
under the posterior distribution equals 1.

5.3 Finding the posterior distribution in closed form1598

A simple Bayesian model contains a joint distribution expressed as a likelihood multiplied by a1599

prior (or priors) [y|✓] [✓]. There are special cases of this product where posterior distribution [✓|y]1600

has the same form as the prior [✓]. In these cases, the prior and the posterior are called conjugate1601

distributions (or simply conjugates) and the prior is called a conjugate of the likelihood. Conjugate1602

distributions are important for two reasons. For simple problems, they allow us to calculate the1603

parameters of posterior distributions on the back of a cocktail napkin.4 Moreover, the ease of1604

calculation of parameters of the posterior for simple problems becomes important for complicated1605

problems if we can break them down into parts that can be attacked one at time. We will learn1606

about the role of conjugates in this process in the chapter on Markov chain Monte Carlo (Chapter1607

7).1608

It is perfectly possible to make use of conjugate priors effectively without knowing how each1609

one is derived. Seeing a single derivation (Box 5.3) is adequate background for most ecologists1610

who seek to use Bayesian methods. However, we will offer a couple of examples here to provide1611

intuition for conjugate relationships. More detailed treatment as well as tables showing the known1612

conjugate distributions can be found in Bayesian textbooks (e.g., Gelman, 2006). The ones we use1613

most frequently are shown in Appendix table A.3.1614

4It is embarrassing to do an elaborate numerical procedure to obtain results that can be obtained on a napkin.
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Box 5.3 Derivation of the posterior distribution for a beta prior and binomial

likelihood

We seek the posterior distribution of the parameter �, the probability of a success conditional

on n trials and y observed successes. The beta distribution is a conjugate prior for the binomial

likelihood. Using Bayes theorem:

[�|y, n] /
✓
n

y

◆
�y(1� �)n�y

| {z }
binomial likelihood

�(↵+ �)

�(↵)�(�)
�↵�1

(1� �)��1,

| {z }
beta prior

(5.3.1)

where ↵ and � are the parameters of the beta prior distribution. By dropping the normalizing

constants
⇣�

n

y

�
, �(↵+�)

�(↵)�(�)

⌘
we obtain:

[�|y, n] / �y(1� �)n�y

| {z }
binomial likelihood

�↵�1

(1� �)��1

| {z }
beta prior

. (5.3.2)

Simplifying:

[�|y, n] / �y+↵�1

(1� �)�+n�y�1. (5.3.3)

Let ↵
new

= y + ↵, �
new

= � + n � y. Multiplying 5.3.3 by the normalizing constant,
�(↵

new

+�

new

)

�(↵

new

)�(�

new

)

we obtain the posterior distribution of �, a beta distribution with parameters

↵
new

and �
new

:

[�|y, n] = �(↵
new

+ �
new

)

�(↵
new

)�(�
new

)

�↵new

�1

(1� �)�new

�1. (5.3.4)
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Here are a couple of examples to show how conjugate prior-likelihood relationships can be used1615

to estimate posterior distributions easily and quickly. Imagine that you are studying infection of1616

whitebark pine (Pinus albicaulis) with blister rust (Cronartium ribicola). You desire information on1617

the proportion of individuals in a stand that are infected, that is, the prevalence of the disease, �.1618

You take a sample of 80 individuals and find 17 that are infected. What is the posterior distribution1619

of �? We will use the simple Bayesian model,1620

[�|y] = [y|�] [�]
[y]

. (5.3.5)

We have no prior knowledge of disease prevalence in the stand, so a reasonable choice for a prior1621

distribution of �, a quantity that can take on continuous values between 0 and 1, is a beta distribu-1622

tion with parameters ↵
prior

= 1,�
prior

= 1, i.e., � ⇠ beta(1, 1) which defines a uniform distribution1623

over (0,1). A logical choice for the likelihood of � is a binomial distribution with y = 17 successes1624

given n = 80 trials where we seek to know the probability of a “success,” i.e., y ⇠ binomial(�,80).1625

Thus,1626

beta (�|↵
posterior

,�
posterior

) =

binomial (y|�, n) beta (�|↵
prior

,�
prior

)

[y]
. (5.3.6)

Using the beta-binomial conjugate prior relationship, we can calculate the parameters of the poste-1627

rior beta distribution using ↵
posterior

= ↵
prior

+y and �
posterior

= �
prior

+n�y. So, in this example,1628

the posterior distribution of � is beta(1+17, 1+80�17) which has a mean of ↵

posterior

�

posterior

+↵

posterior

= .2191629

and variance ↵

posterior

�

posterior

(↵

posterior

+�

posterior

)

2

(↵

posterior

+�

posterior

+1)

= .00206 (Section 3.4.4 and Appendix table1630

A.2). Using the quantile function for a beta distribution, we can calculate that the true value of �1631

lies between .137 and .314 with probability 0.95.1632

As a second example, suppose you are studying copepods in an arctic lake during summer. You1633

want to estimate the posterior distribution of the mean abundance per unit volume using1634

[�|y] = [y|�][�]
[y]

. (5.3.7)

Prior research has shown that lakes like the one you are studying have a mean abundance of �
prior

1635

= 52 individuals per liter with a standard deviation of 6.8. You take a sample of four scoops of1636

one liter of water and count the individuals they contain finding y = (64, 48, 59, 52)0. What can1637
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we say about the abundance of copepods informed by the data and the prior estimate? A good1638

choice for the likelihood in this example (i.e., [y|�]) is the Poisson because the data are discrete1639

and because the variance is approximately the same as the mean. A gamma prior distribution (i.e.,1640

[�]) is conjugate to the Poisson likelihood, so the posterior distribution for the mean of the Poisson1641

(i.e., [�|y]) is also gamma. Thus,1642

gamma (�|↵
posterior

,�
posterior

) =

Q
4

i=1

Poisson (y
i

|�) gamma (�|↵
prior

,�
prior

)

[y]

. (5.3.8)

The parameters of a gamma posterior are ↵
posterior

= ↵
prior

+

P
4

i=1

y
i

and �
posterior

= �
prior

+ n.1643

To use the prior information we must first convert the prior mean and standard deviation to prior1644

parameters using moment matching (Section 3.4.4), ↵
prior

=

µ

2

prior

�

2

prior

= 58.5 and �
prior

=

µ

�

2

= 1.12.1645

It follows that the parameters of the gamma posterior distribution of the mean abundance are1646

↵
posterior

= 58.5 + 64 + 48 + 59 + 52 = 281.5 and �
posterior

= 4 + 1.12 = 5.12. The mean of the1647

posterior is ↵

posterior

�

posterior

= 55.0 with variance ↵

posterior

�

2

posterior

= 10.7 and standard deviation 3.3. The upper1648

0.975 quantile for a gamma distribution with parameters ↵ = 281.5 and � = 5.12 is 61.5 and the1649

lower 0.025 quantile is 48.7. Thus, the probability is 0.95 that the true mean number of individuals1650

per liter is between 48.7 and 61.5.1651

5.4 More about prior distributions1652

We devote an entire section in this chapter to prior distributions because ecologists who have not1653

received formal training in Bayesian methods will be especially unfamiliar with the use of priors, a1654

concept that, in contrast to likelihood, has no parallel in traditional statistical training. We also1655

include this section because ecologists often seek to minimize the influence of the prior on inference.1656

This is a place where it is easy to make errors. Finally, we want to advocate the thoughtful use of1657

informed priors in Bayesian modeling.1658

Some view the choice of a prior in Bayesian models as a contentious topic because it is a decision1659

that can influence inference. However we will attempt to convince you that:1660

1. There is no such thing as a noninformative prior, but certain priors influence the posterior1661

distribution more than others.1662

2. Informative priors, when properly justified, can be tremendously useful in Bayesian modeling1663
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(and science, in general).1664

It is important to remember that one of the objectives of Bayesian analysis is to provide informa-1665

tion that can inform subsequent analyses; the posterior distribution obtained in one investigation1666

becomes the prior in subsequent investigation. Thus we agree with the view of Gelman (2006) that1667

“noninformative” priors are provisional. They are a starting point for analysis. As scientists, we1668

should always prefer to use appropriate, well constructed, informative priors on ✓.1669

5.4.1 “Noninformative” Priors1670

We use the double quotes in this section title because there is no such thing as a noninformative1671

prior. By that we mean that all priors will have some influence on the posterior distribution of some1672

transformation of the parameter you may be interested in learning about. With that said, let’s begin1673

by studying potential priors for a very simple Bayesian model, a model for binary data. Consider1674

the set of binary data (i.e., zeros and ones) denoted by y
i

, for i = 1, . . . , n. If we are interested in1675

inference concerning the probability that a given observation will be one, p = Pr(y = 1), then we1676

could formulate the following parametric model1677

y
i

⇠ Bern(p) , (5.4.1)

where i = 1, . . . , n. In this case, a Bernoulli distribution is the “model” that we assume stochastically1678

generated the data. The Bernoulli distribution contains the parameter p, thus a complete Bayesian1679

model requires a prior distribution for p. Let’s examine a few priors for p as well as their influence1680

on the posterior distribution for the following data set: y = (0, 0, 1, 0, 1, 0, 0, 0, 1, 0)0.1681

Perhaps the most commonly chosen prior for p is the uniform distribution such that 0 < p < 1.1682

The uniform is a specific case of the more flexible beta distribution, thus it is common to select the1683

prior1684

p ⇠ beta(↵,�) , (5.4.2)

where, if ↵ = � = 1, this distribution becomes a uniform. The uniform distribution is commonly1685

thought to be “noninformative” in this setting because all possible values of p are equiprobable. The1686

uniform can be contrasted with a prior where larger values of p are more probable, such as when1687

↵ = 4,� = 1. We compare the posterior distributions arising from these two choices for a prior in1688
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Figure 5.4.1. Notice how the prior in Figure 5.4.1 B “pulls” the posterior toward the larger values,1689

thus influencing it.
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Figure 5.4.1: Prior (dashed line) and resulting posterior distributions (solid line) for a model with a Bernoulli
likelihood and a beta prior with two prior specifications: A ↵ = 1,� = 1 and B ↵ = 4,� = 1.1690

An alternative to the visual approach for assessing the influence of the prior on the posterior is1691

to inspect the closed form mathematical expression for the posterior (i.e., the result of conjugate1692

relationships, Section 5.3). For the Bernoulli-beta model5 we are using in this example, the posterior1693

5We showed the derivation of the expression for the posterior distribution when the prior is beta and the likelihood
is binomial (Section 5.3). Recall that the Bernoulli is a special case of the binomial where the number of trials, n = 1.
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distribution for p is1694

[p|y] = beta

 
nX

i=1

y
i

+ ↵,
nX

i=1

(1� y
i

) + �

!
. (5.4.3)

In our simple example, using the data y, the resulting beta posterior distribution has parameters1695

3+↵ and 7+�. Notice that larger values for ↵ and � will have more of an effect on these parameters1696

in the posterior. Similarly as ↵ and � both get small, the posterior distribution appears to become1697

less influenced by the prior (leaving only statistics related to the data in the posterior). Thus, a beta1698

prior with ↵ = 1,� = 1 will be less influential on the posterior than a beta prior with ↵ = 4,� = 1.1699

This is a seemingly sensible result, and one that is very commonly used to justify the specification of1700

priors, especially for probabilities (i.e., p), regression coefficients (i.e., �), and variance components1701

(i.e., �2). Perfect flatness can only be achieved in bounded priors like the beta; but, priors that1702

approach flatness are often referred to as “flat” nonetheless. You will also see them called “diffuse,”1703

“weak,” or “vague.”1704

It is important to recognize that even the uniform prior for p technically has some influence1705

on the posterior distribution because prior parameters ↵ = 1,� = 1 yield the posterior parameters1706

3+1, 7+1, which are not the same as 3, 7 as would be the case if only statistics related to the data1707

appeared in the posterior. Using this argument, one might be tempted to use ↵ = 0,� = 0 as their1708

prior parameters, but recall from the definition of the beta distribution that both parameters need1709

to be greater than zero to ensure a valid probability distribution. Furthermore, the sensibility of1710

using very small values for ↵ and � in the beta prior breaks down because, as we see in Figure 5.4.2,1711

a beta prior with ↵ = 0.001,� = 0.001 actually pulls the posterior distribution toward zero. A1712

U-shaped prior distribution implied by the beta(0.001, 0.001) has most of its mass near zero and1713

one, thus suggesting that p is more likely to be large or small, but not moderate (i.e., close to 0.5).1714

The take-home message is that all priors have an influence on the posterior distribution and what1715

might seem like a good trick to minimize the prior influence may not always do what you think it1716

should. With that said, one can always overwhelm any amount of prior influence with enough data.1717

In our example, if n gets large, then any prior values for ↵ and � become inconsequential in the1718

posterior; they will be very minimal compared with the large values for
P

n

i=1

y
i

and
P

n

i=1

(1� y
i

).1719

Thus, to some extent, the simplest way to minimize prior influence is to collect a larger data set to1720

begin with!1721
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Figure 5.4.2: Resulting posterior distributions for the Bernoulli-beta model with prior specifications ↵ =

1,� = 1 (solid line) and ↵ = 0.001,� = 0.001 (dashed line).
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Another caution in specifying priors that appear to minimize the influence on the posterior1722

distribution pertains to “propriety.” A proper probability distribution is a positive function that1723

integrates to one over the support of its random variable (Section 3.4). If the function does not1724

integrate to one, then it is termed “improper” and is not technically a valid probability distribution.1725

That means that we can’t use it for statistical inference because all statistical theory depends on1726

the basic axioms about probability distributions. For example, continuing the previous discussion1727

about how to make the beta distribution less influential, we would be tempted to use ↵ = 0,� = 0.1728

However, because both parameters need to be positive to guarantee a proper prior distribution, the1729

beta(0, 0) is not a valid probability density function and thus its use is not advised. Interestingly,1730

the resulting posterior, which we can still work out analytically, ends up being a beta(3, 7), which is1731

proper in this specific case. Therefore, an improper prior can sometimes lead to a proper posterior,1732

but that result has to be shown for the particular model being fit and almost always depends on1733

the data. If you cannot mathematically show that your posterior is proper, then it’s best to avoid1734

improper priors.1735

Let’s consider another situation. Suppose you have the same data and Bayesian model but are1736

interested in obtaining inference related to the quantity p2, rather than p. The seemingly benign1737

uniform prior (i.e., beta(1, 1)) for p then becomes quite informative for p2. To illustrate this point,1738

we can find the implied prior distribution for p2 using a Jacobian transformation technique.6 In this1739

case, if we use a uniform prior for p, the implied prior for p2 (the quantity we desire inference about)1740

is proportional to 1/p. Therefore the values of p2 under its implied prior are not equiprobable like1741

they are for p. Specifically, the uniform prior for p says that smaller values for p2 are more probable1742

than larger values. That result may not be what we had in mind when we chose the beta(1, 1)1743

prior for p. A prior whose information about a parameter does not change when you transform the1744

parameter is called “invariant to transformation.” The Jeffreys prior was developed for this exact1745

purpose, to help specify priors that are invariant to transformation.1746

The Jeffreys prior depends on the form of the likelihood (also called the data model). More1747

specifically, the Jeffreys prior is proportional to Fisher information raised to the half power.7 That1748

6The details of this technique are beyond the scope of this book, but can be found in any graduate level mathe-
matical statistics book.

7This is the same Fisher information that is used to find asymptotic variance of an MLE.

108



Bayesian models for ecology

is, if we can calculate the negative expectation of the second derivative of the log likelihood ex1749

�E
y

✓
d2 log[y|p]

dp2

◆
(5.4.4)

then we have something proportional to the Jeffreys prior. The Jeffreys prior for our ongoing binary1750

data example (5.4.1) is, perhaps surprisingly, a beta(0.5, 0.5) distribution. This Jeffreys prior will1751

contain the same information for p as it will for p2, or any other transformation of p for that matter.1752

Unfortunately, the Jeffreys prior is often called “noninformative,” but for those same reasons cited1753

above, it is not noninformative. One might use a Jeffreys prior when they don’t know what else1754

to use, in this case, because it happens to be invariant to transformation. For our example, the1755

Jeffreys prior is U-shaped; not quite as extremely U-shaped as the beta(0.001, 0.001) prior for p, but1756

it will still give more prior preference to those values close to zero and one than 1/2. The Jeffreys1757

prior for this particular example turns out to be proper, but it is not guaranteed to be proper for1758

all models.1759

You will commonly see a normal prior with large variance used as a prior distribution for a1760

variety of parameters. A normal distribution with large variance (i.e., N(0, 1000)) is often justified1761

as an attempt to find a vague prior that is conjugate.8 Given that the normal distribution is not1762

bounded, it will be impossible to make it perfectly flat, so the large variance serves as a mechanism1763

to at least spread it out.9 A normal with infinite variance would be flat, but then would also1764

not be proper (i.e., would not integrate to one). The use of a normal prior with large, but finite,1765

variance seems to work fine without complications for parameters that are means, and where plenty1766

of information exists in the data. However, for other types of parameters, say transformations of1767

probabilities such as logit(p), the normal prior with large variance can have a dubious influence on1768

the posterior.1769

To illustrate our point, suppose we have the same Bernoulli model for the binary data we’ve1770

8Recall that conjugacy occurs when a prior and posterior have the same form. There can be many analytical and
computational advantages to using conjugate priors, but they are not always the best choice.

9Keep in mind that the prior variance is always relative to the scale of the parameter. For example, if the data
indicate that a parameter should be 1000, then a N(0, 100) prior for that parameter will probably be informative
unless the sample size is huge, because a variance of 100 is small relative to 1000, as is the prior mean of 0.
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been discussing in this Section and we use the prior for logit(p) such that1771

logit(p) ⇠ normal(0,�2
p

) , (5.4.5)

where, �2
p

is set to be a large number. The question is: What prior does this imply for p (rather than1772

logit(p))? Simulating 10, 000 random draws from a normal distribution and taking the inverse logit1773

transformation, we can see in Figure 5.4.3 that a normal with �2
p

= 100 is much more informative1774

than a normal with �2
p

= 2.
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Figure 5.4.3: Histograms of p based on samples drawn from prior distributions for A) logit(p) ⇠
normal(0, 100) and B) logit(p) ⇠ normal(0, 2).1775

Priors with large variance might seem vague or less informative, but they are not always, thus it1776

is a good idea to check the implied prior distribution in the transformation of the parameter for1777

which you desire inference. You can do this by varying the values of the parameters for the prior1778

and examining how that variation effects the posterior.1779

It’s worth mentioning that the same methods are commonly used for choosing priors for vari-1780

ance components. In fact, we show models that contain such priors throughout this book. It is1781

important to realize that such priors are not truly noninformative, for the same reasons we have1782

described above. For example, suppose we have data that can be sufficiently modeled with a normal1783

distribution1784

y
i

⇠ normal(µ,�2) , (5.4.6)
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for i = 1, . . . , n, and where the mean µ is assumed to be known (for now) and our interest lies1785

in obtaining inference about the variance �2. A conjugate prior for the variance parameter is the1786

inverse gamma distribution1787

�2 ⇠ inverse gamma(↵,�) , (5.4.7)

which yields the posterior for �21788

⇥
�2|y

⇤
= inverse gamma

✓
n

2

+ ↵,

P
n

i=1

(y
i

� µ)2

2

+ �

◆
. (5.4.8)

Notice that, similar to the beta posterior we discussed previously, here in the inverse gamma1789

posterior for �2, if ↵ and � get small then the influence of the prior on the posterior is minimized.1790

Thus, it is common to see priors for variance components specified as inverse gamma (0.001, 0.001),1791

in an attempt to minimize prior influence (but see Gelman, 2006) However, these priors are not1792

“noninformative” and are not invariant to transformation. An example of where this sort of prior1793

can be misleading is if one was interested in obtaining inference about the standard deviation �,1794

rather than the variance �2.10 As an alternative, the Jeffreys prior could be used for �2. For this1795

model, the Jeffreys prior turns out to be proportional to 1/�2, which has the form of an inverse1796

gamma with ↵ = 0 and � = 1. This formulation for the inverse gamma does not yield a proper1797

prior because both parameters (↵ and �) must be positive. However, the Jeffreys prior, as always,1798

is invariant to transformation. Like in the case with the Bernoulli model previously discussed, the1799

Jeffreys prior for �2 yields a proper posterior as long as at least one observation is available (i.e.,1800

n � 1).1801

Finally, there is another approach to finding priors that are minimal in their influence on the1802

posterior; these priors are called “reference” priors. A reference prior is found by maximizing the1803

Kullback-Leibler divergence between the posterior and prior distributions.11 The heuristic concept1804

behind reference priors is that a prior which is as different as possible from the posterior may1805

be desirable if you has no actual prior information or expertise and just needs a default prior to1806

10This is more common than you might think, as it is easier for us to interpret the standard deviation � than the
variance �

2.
11The development of this concept is beyond the scope of this book, but in short, the K-L divergence provides a

way to measure discrepancy between two distributions; it involves explicit integration and can be difficult to compute
in practice, making this approach quite technical.
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use so that you can still obtain Bayesian inference.12 Interestingly, for univariate parameters, the1807

reference prior approach yields the Jeffreys prior! However, in multivariate situations, the reference1808

prior needs to be found for each individual model where it is being used. Actually calculating the1809

correct reference prior can be quite analytically and numerically challenging. The field of objective1810

Bayesian inference focuses on this task for various models.1811

5.4.2 Informative Priors1812

We have learned that all priors influence the posterior in some way, but that we can often assess the1813

amount of influence and sometimes even control it. Philosophically, when formulating statistical1814

models, we might ask ourselves why we’re trying to limit the influence of the prior on the posterior1815

in the first place. The illusion of objectivity has been put on a pedestal in science, almost to1816

the extent that we are to believe that only new data can be used to reach scientific conclusions.1817

Extrapolating this concept to Bayesian statistics would then imply that we should be looking for1818

priors that have no influence on the posterior (hence the previously mentioned subfield of objective1819

Bayesian inference). However, a not often recognized point is that all parametric statistical modeling1820

approaches are subjective, including maximum likelihood. The very fact that we have to choose1821

a likelihood function implies that we have made a strong assumption about the data generating1822

mechanism. Nonparametric statistical approaches seek to minimize such assumptions, but they1823

make their own set of strong assumptions based on their associated computational algorithms for1824

providing inference. Any constraint you put on the data or parameters in order to obtain inference1825

imparts subjectivity. As we discuss in Chapter 9, the various forms of regularization, including1826

penalization methods and model selection, put extreme constraints on parameters, yet they are used1827

throughout statistics and across all applied fields without much fanfare concerning their inherent1828

subjectivity. More importantly, these approaches are recognized as being helpful in many ways!1829

Our view is that we would be remiss if we ignored decades of important scientific learning in1830

the field of ecology and that there should be a way to rigorously incorporate this learning into1831

our statistical approaches. Fortunately, the Bayesian framework provides such a mechanism. The1832

posterior distribution itself is a formal, mathematically valid way to combine information from1833

current as well as previous scientific studies. In that light, it is not difficult to see that the posterior1834

12Some argue that this very concept seems contrary to the Bayesian spirit by trying to avoid its biggest utility, the
ability to properly account for previous research efforts in making scientific conclusions.
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distribution and Bayesian framework are a mathematical representation of the scientific method1835

itself.1836

In the scientific method, we use existing data and expertise to formulate hypotheses about how1837

the world works, then we make conclusions and update hypotheses using new data. In Bayesian1838

statistics, we summarize our understanding of how the world works in a prior distribution and then1839

“update” (i.e., compute the posterior distribution) our understanding using new data. Science would1840

be completely haphazard if we threw out everything we knew about the world every time we began a1841

new study. Haphazard is not even a strong enough word to describe science performed in a manner1842

where we pretend to be completely ignorant about our study system; perhaps lazy or irresponsible1843

would be a better descriptor! In all seriousness, we challenge the reader (and ourselves) to provide1844

an example of a parameter in a statistical model they wish to fit where they know absolutely nothing1845

about it. Nothing at all. At a minimum, we should all know at least the support (i.e., the values the1846

parameter can assume) for any parameter, but we often know quite a bit more than that. Ignoring1847

prior information when you actually have it, is like selectively throwing away data before an analysis.1848

Instead, we argue that science would be better off if we all took the time to carefully collect1849

and represent our prior understanding of parameters in Bayesian models. Doing so can be hard1850

work, as it sometimes requires a mathematical transformation of moments into natural parameters1851

occurring in the distribution we, as experts, value as best representing the data and parameters.1852

It also could include being more responsible in our knowledge of preexisting scientific findings, for1853

example, by more carefully reading the literature and translating those findings into quantitative1854

information we can use in our prior. Formulating honest and responsible priors may also involve1855

communicating with other experts on the topic under study, probing them for details that can be1856

represented in probability distributions to serve as priors. Yes, this is beyond what we normally do1857

in statistical analyses, but Bayesian methods provide the tools to incorporate such information and1858

we should be obligated to use them responsibly.1859

Aside from our inherent obligation to be responsible in accounting for the body of accumulated1860

scientific knowledge when we make new inference, so-called informative priors can be quite helpful.1861

For example, strong priors can be beneficial in the following ways:1862

• They allow us to borrow strength across several sources of information, including different1863
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data sources and expert knowledge. Given that priors are most influential when paired with1864

small data sets, it can be incredibly helpful to obtain meaningful inference by having a formal1865

mechanism to combine several smaller, but independently collected data sets into a single1866

modeling framework. An additional likelihood involving a separate data source can often be1867

written as a prior in the original model containing the primary data source. We cover use of1868

multiple likelihoods in the joint distribution in Section 6.2.5.1869

• Informative priors stabilize computational algorithms. This benefit is not an inferential one,1870

but definitely a practical one. When statistical models accumulate parameters in such a way1871

that the ratio of unknowns to knowns grows, the probability surfaces we need to explore during1872

the fitting process can acquire pathological problems such as lack of identifiable parameters,1873

multicollinearity, and flat likelihood or posterior surfaces. Such issues can cause numerical1874

approaches to become unstable (e.g., failure to converge). Stronger priors add definition to1875

the surfaces that are being explored by the statistical fitting algorithms and thus improve1876

computational stability.1877

• Stronger priors offer a formal way to place constraints on the unknowns in statistical models.1878

A seldom recognized fact is that such constraints are the basis for important inferential tools1879

such as model selection. We cover this topic in great detail throughout Chapter 9, but as a1880

preview we note here that important concepts such as information criteria, penalized likelihood1881

methods, ridge regression, Lasso, and cross-validation are used regularly in many fields and can1882

all be effectively considered as different ways to improve inference through the use of stronger1883

priors. Most statisticians are now recognizing that imposing a constraint on an optimization1884

problem (e.g., like maximizing a likelihood) is the same concept as specifying a prior in a1885

Bayesian model and both can be helpful for the same reasons.1886

Excellent examples of the benefits of using informative priors can be found in Crome et al. (1996);1887

McCarthy and Masters (2005); Elderd et al. (2006) and McCarthy et al. (2008).1888

Up to now, we have considered informative priors as single distributions as if they were obtained

from a single, previously conducted investigation. What do we do if we have multiple sources of

prior knowledge informing a parameter, ✓? Recall the idea of a mixture distribution (Section 3.4.5).

We can compose a prior from multiple previous studies by mixing their estimates of ✓. A prior on
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✓ using information from L different studies can be written as

[✓] =
LX

l=1

w
l

[✓]
l

(5.4.9)

LX

l=1

w
l

= 1 (5.4.10)

where the w
l

are weights. If we believe that all studies were conducted equally well, then the w
l

1889

would be chosen to be equal. As an example, assume we had three studies of the intercept (�
0

)1890

in a regression with an associated variance and we wanted to combine them in a prior. We might1891

reasonably use1892
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Now that we can see the potential value of priors informed by single or multiple studies, we need1893

to know how to represent existing scientific knowledge in the form of a probability distribution.1894

Several different approaches exist for manifesting expert knowledge about a parameter into a prior1895

distribution, but rather than cover each one generically, instead consider the following example.1896

5.4.3 Example: Priors for Moth Predation131897

A particular species of moth rests during the day on tree trunks (it is active at night), and their1898

coloration acts as camouflage to protect them against predatory birds. A study was conducted to1899

evaluate predation of a common moth species. Suppose that n sites (for i = 1, . . . , n) were selected,1900

and a varying number of dead moths (N
i

) were glued to tree trunks at each site. After 24 hours,1901

the number of moths that had been removed (y
i

), presumably by predators, were recorded. A1902

reasonable data model for the moth counts would be a binomial with N
i

“trials” per site such that1903

y
i

⇠ binomial(N
i

, p) , (5.4.12)

where the parameter p corresponds to the probability of predation and is the unknown about which1904

we desire inference. Consider the following three scenarios in formulating an appropriate prior1905

13This example is gratefully modified from the excellent text of Ramsey and Schafer (2012) using ideas from Kiona
Ogle.
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distribution for this model:1906

1. We desire a relatively vague prior that contributes information equivalent to two additional1907

“placed” moths and an expected prior probability of predation of 0.5.1908

2. We desire an informative prior based on a previous observational study that reported an1909

average of 10% (standard deviation of 2.5%) of the moths in a population were eaten by1910

predators in a 24 hour time period.1911

3. We desire an informative prior based on a pilot study that suggests the proportion removed1912

in any given 24 hour period is unlikely to exceed 0.5 or be less than 0.1.1913

In scenario 1, the fact that we do not feel we have much prior information pertaining to p means1914

that we want to spread out the probability mass in the prior between zero and one such that our1915

prior has a mean of 0.5, but no real strong preference for any range of values. A beta distribution1916

could work well here such that p ⇠ beta(↵,�). But how do we assess the information content of the1917

prior in terms of an effective increase in sample size? The answer comes from looking at the form1918

of the posterior distribution for this model:1919

[p|y] = beta

 
nX

i=1

y
i

+ ↵,
nX

i=1

(N
i

� y
i

) + �

!
. (5.4.13)

In (5.4.13) we can see a very similar form for the posterior as we had in the Bernoulli model1920

we discussed previously where each of the updated posterior parameters contain a sum of two1921

components, one coming from the data and one coming from the prior. In the first parameter1922

P
n

i=1

y
i

+↵, we see that the sum of y
i

over all sites contains the total number of moths placed that1923

were preyed upon plus the prior parameter ↵. In the second posterior parameter
P

n

i=1

(N
i

� y
i

)+�1924

we see that it is the number of total moths not predated plus prior parameter �. Thus if we set1925

↵ = 1 and � = 1, it is kind of like adding two moths to the sample size in such a way that it1926

does not impose any preference for predation. In this case, the implied prior is a beta(1, 1) or a1927

uniform distribution. Of course, we could have said that we wanted a uniform to begin with, but1928

it is instructive to see that the prior parameters ↵ and � can be thought of as augmenting the1929

sample size if that helps specify prior information. Knowing that, what prior would be induced if1930

we had the equivalent of 10 extra moths worth of prior information such that 60% were in favor1931
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of predation and the other 40% were against predation? The answer could be easily visualized by1932

plotting a beta probability density function with parameters ↵ = 4 and � = 6.1933

In scenario 2, we have information from a former study on moth predation. That study provides1934

inference pertaining to the mean and standard deviation of the proportion of moths predated upon.1935

In translating this information into our beta prior, we can consider the mean and variance equations1936

associated with a beta random variable:1937

E(p) =

↵

↵+ �
(5.4.14)

Var(p) =

↵�

(↵+ �)2(↵+ � + 1)

. (5.4.15)

Setting E(p) = 0.1 and
p

Var(p) = 0.025, we can back solve for ↵ and � to find the appropriate1938

prior (as we discussed in Section 3.4.4). Letting the reader check our algebra, we arrive at ↵ = 14.31939

and � = 128.7 as parameters in our prior.1940

Scenario 3 is slightly more involved, but entirely realistic, in that it is common for prior informa-1941

tion to arise as bounds on likely values for a parameter. In this scenario, if we assume that the term1942

“unlikely” implies that p should fall between a lower bound and upper bound with high probability1943

(e.g., 95%), then we need to take a similar approach to the moment matching technique, but instead1944

of relating moments to the results of a pilot study, we relate quantiles of the distribution to the1945

results of a pilot study. That is, we need to solve the system of equations1946

ˆ
0.1

0

beta(p|↵,�)dp = 0.025 (5.4.16)
ˆ

1

0.5

beta(p|↵,�)dp = 0.025 , (5.4.17)

for ↵ and �. The system of equations are really just representing the quantile function associated1947

with the beta distribution. This calculation would be quite difficult to perform analytically (i.e.,1948

pencil and paper) but could be approximated numerically using an optimization algorithm in a1949

mathematical or statistical software package. We used the function optim() in R (R Core Team,1950

2013) to find the appropriate prior parameter values ↵ = 4.8 and � = 12.7 by minimizing the1951

difference between the output of beta quantiles function (i.e., qbeta() in R) and .025.1952
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So, as we can see, there are a variety of ways to convert preexisting scientific information and1953

expertise into probability distributions for use as priors in Bayesian models. These informative1954

priors can be very useful in many ways, but only when care is taken to appropriately specify them.1955

It is a common concern that if Bayesian models fall into the wrong hands, they could be misused by1956

those seeking to mislead science or policy. The fact is, even under such dubious intentions, the priors1957

would have to be clearly written out in any scientific communication and would be scrutinized just as1958

any other scientific finding is scrutinized during peer review. Furthermore, for those with villainous1959

intentions, there are much easier ways to mislead science or the general public, for example, by1960

outright fabrication of scientific studies. We feel that carelessness by well intending scientists (in1961

the field, lab, or in specifying inappropriate likelihoods or priors) is probably a much more common1962

cause of erroneous inference than mischief.1963

5.4.4 Guidance1964

We admit that the cautionary statements in this Section could make the choice of priors seem1965

complicated and difficult; however that is not our aim. We feel that priors can be an important1966

component of science and can be helpful in obtaining models that are useful for inference. Our1967

goal in this discussion of priors is to instill a sense of awareness about the decisions being made in1968

the model building process. If you are more thoughtful about the specification of priors and the1969

associated consequences after reading this Section, then we have done our job.1970

The fact is, not many of these details are made clear in other texts on applied Bayesian statistics1971

and we wrote this Section, at least in part, as a reminder to ourselves to think deeply about how we1972

can manifest prior scientific knowledge into the form of a probability distribution for use as a prior.1973

You’ll notice that we commonly use default priors in examples throughout this book. It would seem1974

that by doing so, we encourage this practice, but in reality we don’t claim to be experts in all of the1975

applied subjects in the diverse examples we offer. Thus, it is with a touch of “do as we say, not as1976

we do” that we suggest that our model specifications throughout are only placeholders for a model1977

that might actually be used by an expert in the relevant field. This Section also serves as a prelude1978

to Chapter 8 where we show a concrete example of the value of prior information and to Chapter1979

9 where we describe ways that priors are an example of regularization, an approach widely used in1980

statistics to improve model fit.1981
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Although we have provided you with several approaches for specifying priors for specific models1982

in this Section, it would be too lengthy to list all possible options for all possible models. Thus, in1983

the big picture, we echo the guidance provided by Seaman III et al. (2012) and leave you with a few1984

further general diagnostics and remedies to consider when specifying priors in Bayesian models:1985

• Bear in mind that one of the objectives of Bayesian analysis is to provide information that can1986

inform subsequent analyses; the posterior distribution obtained in one investigation becomes1987

the prior in subsequent investigation. Thus we agree with the view of Gelman (2006) that1988

vague priors are provisional – they are a starting point for analysis. As scientists, we should1989

always prefer to use appropriate, well constructed informative priors.1990

• Visualize the prior you choose in terms of the parameters for which you desire inference.1991

We did this above for the logit(p) (i.e., Figure 5.4.3). Sometimes this can be accomplished1992

analytically (i.e., with pencil and paper, using calculus), but it’s often easier to just simulate1993

values from your prior, then transform them to represent the quantity you want inference on1994

and plot a histogram.1995

• Perform a prior sensitivity analysis. Try several different priors, maybe by simply choosing1996

different prior variances, and see how much the posterior distribution moves around as a result.1997

You’ll often see little posterior sensitivity to priors when there is a high data to parameter1998

ratio. However, if the posterior is sensitive to the prior and you truly desire a prior that is only1999

weakly informative, you will need to rethink your prior by changing its form or parameters .2000

Alternatively, you must carefully justify your choice of prior in relation to the inference you2001

seek.2002

• An influential prior could be indicated if the posterior inference differs greatly from maximum2003

likelihood inference. Of course, this can only be checked in models where both approaches2004

can be implemented easily, so it may not be practical for more complicated Bayesian models.2005

Still, in some Bayesian models, inference will approach what would be obtained with inference2006

based on maximum likelihood if certain priors are used.2007

• Parameters that are dependent should probably have priors that acknowledge the dependence.2008

We are often lured into thinking that we can get away with specifying independent priors for2009
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parameters, but a prior that is a joint multivariate distribution or conditional distribution for2010

one parameter given another is often more appropriate. An example is in regression where2011

y
i

⇠ normal(�
0

+ �
1

x
1,i

+ �
2

x
2,i

,�2) for i = 1, . . . , n. In this case, it is common to use2012

the independent normal priors, �
0

⇠ �
1

⇠ normal(0,�2
�

) and �
2

⇠ normal(0,�2
�

), but it can2013

be helpful to use a multivariate normal prior for both regression coefficients simultaneously:2014

� ⇠ normal(0,⌃), where � is the vector containing �
1

and �
2

, 0 is a vector of zeros, and ⌃2015

is a covariance matrix.2016

• Keep in mind that even in large sample size situations there may be not be enough information2017

in the data to tease apart different parameters, regardless of their priors. This is more of2018

an identifiability problem14 rather than a problem with the prior and the form of model2019

itself should be reconsidered. An example of where this can happen is with binomial data2020

y
i

⇠ binomial(N, p) for i = 1, . . . , n where N and p are unobserved. There is not enough data2021

in the world to learn about both N and p individually in this case, but a strong prior on one of2022

the two parameters (if warranted) can help focus the inference on the other. However, without2023

sufficient prior information this is not a really useful model in an inverse (i.e., statistical)2024

setting.2025

14Parameters are identifiable if they can be estimated given a large amount of data. They are unidentifiable if they
cannot. See section 6.3 for a more complete definition of identifiability.
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